An acetate bound cobalt oxide catalyst for water oxidation: role of monovalent anions and cations in lowering overpotential.
نویسندگان
چکیده
A homogeneous solution of Co(II) in acetate buffer at pH 7 is found to be an efficient water oxidation catalyst (WOC) showing significantly greater current density than Co(II) in phosphate buffer (Co-Pi) under identical conditions owing to the higher solubility of the former. When electrodeposited on ITO/FTO electrodes it forms acetate bound cobalt(II)-oxide materials (Co-Ac-WOC) showing a catalytic current density of 0.1 mA cm(-2) at 830 mV and 1 mA cm(-2) at 1 V in a pH 7 buffer solution. The morphology of Co-Ac-WOC and its evolution with time and deposition potential is investigated with AFM, HR-TEM and SEM. The chemical composition of Co-Ac-WOC is investigated using XPS, EDX, ATR-FTIR and combustion analysis which indicate that this material has a CoO core with chloride and acetate anions bound to the Co center. Sodium is found to be integrated in the Co-Ac-WOC. The presence of the sodium and chloride ions lowers the onset potential for the oxygen evolution reaction (OER) by 240 mV relative to the classic Co-Pi at pH 7. The lower onset potential and higher OER current lowers the exchange current density to 10(-6.7) A cm(-2) in Co-Ac-WOC relative to 10(-8)-10(-10) A cm(-2) in Co-Pi and its derivatives.
منابع مشابه
Effects of Excess Cobalt Oxide Nanocrystallites on LaCoO3 Catalyst on Lowering the Light off Temperature of CO and Hydrocarbons Oxidation
Catalysts with the formula of LaCo(1+x)O(3+δ), where 0 ≤ x ≤ 1, were studied for oxidation of CO and C2H6 in a synthetic exhaust gas, comprising 6.0 % CO and 0.2 % C2H6 in Ar. Ethane was selected as a model for hydrocarbons in the exhaust gas. The performance of catalysts is correlated to their properties, particularly their ...
متن کاملبهینهسازی ترکیب نانوساختار کربنی به عنوان زیر لایه در رشد الکتروکاتالیستهای کبالت
Global warming and other adverse environmental effects of fossil fuels have forced humans to consider clean and renewable energy resources. In this context, hydrogen production from water splitting reaction is a key approach. In order to reduce required overpotential for water oxidation reaction, it is necessary to use low cost and earth abundant electrocatalysts like Co, Cu, Fe, Mn, Ni and Zn ...
متن کاملAmorphous Cobalt Vanadium Oxide as a Highly Active Electrocatalyst for Oxygen Evolution
The water-splitting reaction provides a promising mechanism to store renewable energies in the form of hydrogen fuel. The oxidation half-reaction, the oxygen evolution reaction (OER), is a complex four-electron process that constitutes an efficiency bottleneck in water splitting. Here we report a highly active OER catalyst, cobalt vanadium oxide. The catalyst is designed on the basis of a volca...
متن کاملCatalytic Oxidation of Carbon Monoxide by Cobalt Oxide Catalysts Supported on Oxidized-MWCNT
Cobalt oxide catalysts supported on oxidized multi-walled carbon nanotubes (MWCNT) for the low-temperature catalytic oxidation of carbon monoxide were prepared by an impregnation-ultrasound method. These catalysts were characterized by N2 adsorption/desorption, TEM, XRD, Raman, and H2-TPR methods. The XRD and Raman results indicated that the phase of the synthesized cobalt...
متن کاملCoordination tuning of cobalt phosphates towards efficient water oxidation catalyst
The development of efficient and stable water oxidation catalysts is necessary for the realization of practically viable water-splitting systems. Although extensive studies have focused on the metal-oxide catalysts, the effect of metal coordination on the catalytic ability remains still elusive. Here we select four cobalt-based phosphate catalysts with various cobalt- and phosphate-group coordi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 16 24 شماره
صفحات -
تاریخ انتشار 2014